Course Type	Course Code	Name of Course	L	Т	Р	Credit
ESC	NGLE102	Introduction to Oceanography and Climatology	3	0	0	3

Course Objective

This course provides a foundational understanding of the ocean and its interaction with the Earth's climate system.

Learning Outcomes

Upon completion of the course, students will be able to:

- 1. Understand the basic physical, chemical, and biological properties of the ocean.
- 2. Describe the major oceanographic features and processes, including currents, waves, tides, and marine ecosystems.
- 3. Understand the fundamental concepts of climatology, including atmospheric circulation, energy transfer, and climate change.
- 4. Explore the linkages between oceanography and climatology, and their influence on Earth's systems.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1.	Introduction: Exploring Earth's "Blue Planet"; Oceans and their Importance; Basic oceanographic features and concepts: salinity, temperature, density, and thermocline; Introduction to Climatology: Weather vs. climate; climate elements.	4	Learn the significance of Earth's oceans, and distinguish between weather and climate.
2.	Exploring Oceans and Their Properties: Methods for oceanic research: Ships, buoys, and satellites; The ocean floor: topography, bathymetry, and geological features; The chemical composition (major, minor) and physical characteristics (Light penetration, heat capacity, and density changes) of seawater.	5	Understand oceanrelated research methodologies and seawater's properties for comprehensive oceanic analysis.
3.	Oceanic Dynamics: Ocean circulation: surface currents, subsurface currents, deep currents, and thermohaline circulation. Waves: Generation, classification, and impact on coastlines; Tides: gravitational forces, types and coastal processes.	7	Comprehend and analyze the complex interplay in oceans, and their impacts on coastal processes.
4.	Marine Ecosystem: Plankton, Nekton, Benthos, and Food Webs; Fisheries and Marine Resource Management: Sustainability and Environmental Concerns; Ocean pollution: types, origins, and effects on marine ecosystems. Estuaries and Coastal Ecosystems: Unique ecosystems at the land-sea interface.	4	Learn about marine ecosystems, fisheries management, ocean pollution, and the importance of estuaries.

5. Unit No.	Introduction to Climatology: The atmosphere's composition: Layers, and energy balance; General atmospheric circulation: global wind patterns, precipitation, and pressure systems; Weather Topics to be Covered	8 Lectur e Hours	Comprehend atmospheric composition, global wind patterns, weather Learning Outcome
	systems: fronts, cyclones, anticyclones, and precipitation. Monsoon systems; Climate variability and change: Natural and human-caused influences.		systems, and climate variability.
6.	Ocean-Atmosphere Interactions: Ocean acidification: Chemical effects of CO_2 absorption. Climate Change and Sea Level Rise: Threats and Responses. Global heat transport: the significance of oceans in climate regulation; El Niño-Southern Oscillation (ENSO) impacts and climate patterns.	8	Understand the oceanatmosphere interactions, climate change effects, and teleconnections.
7.	Applications and Future Challenges: Oceanography and Climate in Resource Management: Fisheries, Oil and Gas, and Climate Prediction; Remote sensing and data analysis for oceanography and climatology; Future challenges in a changing environment: Ocean Health, Sustainability, and Mitigation Strategies. AI and machine learning applications. Ocean Exploration and Climate Studies.	6	Acquire knowledge and critical thinking skills to solve real-world problems.
	Total Classes	42	

Textbook: 1. Pinet, P. (2009), Invitation to Oceanography, Jones & Bartlett Learning.

Reference Books:

- 2. Society, A. M., Segar, D., Kish, S. and Mills, E. (2011), *Ocean Studies: Introduction to Oceanography*, American Meteorological Society, Education Program.
- 3. Stewart, R. (2014), *Introduction to Physical Oceanography*, CreateSpace Independent Publishing Platform.
- 4. Trujillo, A. and Thurman, H. (2019), *Essentials of Oceanography*, Pearson Education.
- 5. Maul, G. (2012), Introduction to satellite oceanography, Springer Netherlands.
- 6. Rohli, R. and Vega, A. (2017), *Climatology*, Jones & Bartlett Learning.
- 7. Aguado, E. and Burt, J. (2015), Understanding Weather and Climate, Pearson.
- 8. Garrison, T. and Ellis, R. (2021), *Oceanography: An Invitation to Marine Science*, Cengage Learning.